
UNIVERSITY OF WASHINGTON

Data Visualization in Base R

Adam Kuczynski

UNIVERSITY OF WASHINGTON

There are dozens of packages that
make it easier to create complex
figures, including ggplot2 ,
patchwork , lattice , diagrammeR ,
and more!

Create interactive visualizations with
plotly , ggvis , htmlwidgets ,
leaflet , shiny apps, and other R
tools

🧠 Psychology's new home

Why use R for data visualization?
R data visualization is extremely flexible! Almost any data visualization you can think
of is possible to create in R

Creating visualizations in R allows you to create dynamic plots that change with new
data. This is useful when you want to create plots on a recurring basis (e.g., monthly
revenue reports) or even realize that you missed some data initially. Repeat the same
code every time!

2 / 60

+
−

Leaflet | © OpenStreetMap contributors, CC-BY-SA

https://leafletjs.com/
http://openstreetmap.org/
http://creativecommons.org/licenses/by-sa/2.0/

UNIVERSITY OF WASHINGTON

The Generic plot() Function
Many data visualizations created in R start with the same function: plot()

plot() knows how to handle several different types of objects because it is a
generic function with lots of methods:

methods(plot)

[1] plot.acf* plot.data.frame* plot.decomposed.ts*
[4] plot.default plot.dendrogram* plot.density*
[7] plot.ecdf plot.factor* plot.formula*
[10] plot.function plot.hclust* plot.histogram*
[13] plot.HoltWinters* plot.isoreg* plot.lm*
[16] plot.medpolish* plot.mlm* plot.ppr*
[19] plot.prcomp* plot.princomp* plot.profile.nls*
[22] plot.R6* plot.raster* plot.shingle*
[25] plot.spec* plot.stepfun plot.stl*
[28] plot.table* plot.trellis* plot.ts
[31] plot.tskernel* plot.TukeyHSD* plot.zoo
see '?methods' for accessing help and source code

3 / 60

UNIVERSITY OF WASHINGTON

plot() Arguments
plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,
 log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
 ann = par("ann"), axes = TRUE, frame.plot = axes,
 panel.first = NULL, panel.last = NULL, asp = NA,
 xgap.axis = NA, ygap.axis = NA,
 ...)

There are a lot of arguments to plot() !

Several of these arguments will be discussed in these slides, but not all of
them. That means that making plots often involves teaching yourself
something new each time with the help pages, Stack Overflow, and other
various websites and blogs.

See help(par) for a full list of graphical parameters, many of which can be
used within the ... argument

4 / 60

UNIVERSITY OF WASHINGTON

Vectors of coordinates
plot(x = mtcars$wt,
 y = mtcars$mpg)

Formula (`y~x`)
plot(mtcars$mpg ~ mtcars$wt)

Two-column dataframe of x, y coordinates
plot(mtcars[, c("wt", "mpg")])

Scatterplot

What defaults do you notice?

Plots points (type = "p") of a specific shape (pch = 1)

Axis labels (R code supplied to the arguments)

No header (main = NULL)

Chooses axis ticks for you

...and hundreds more!

5 / 60

UNIVERSITY OF WASHINGTON

Main Title

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight")

Axis Titles

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)")

Plot Titles

6 / 60

UNIVERSITY OF WASHINGTON

R default axes are not publication
ready!

The axes overlap with the box
around the plot

The y-axis tickmarks are vertical

The axes are thin and hard to
see

The default tick marks may not
be desirable

The default tick labels may not
be desirable

Fixing Ugly Axes

7 / 60

UNIVERSITY OF WASHINGTON

full box (default)
plot.new()
box(bty = "o")

bottom and left
plot.new()
box(bty = "L")

top and right
plot.new()
box(bty = "7")

top, left, and bottom
plot.new()
box(bty = "C")

left, bottom, and right
plot.new()
box(bty = "U")

box()
The box() function is responsible for placing a box around your points. There are several different
box types (specified with the bty box type argument):

8 / 60

UNIVERSITY OF WASHINGTON

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 axes = F) # do not plot axes

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 axes = F)
box() # plot box

Fixing the box()

9 / 60

UNIVERSITY OF WASHINGTON

x-axis y-axis

Add the axes back in

plot(...,
 axes = F,
 xlim = c(1, 6))

box()

axis(side = 1, # x-axis
 at = 1:6, # ticks at 1 through 6
 labels = 1:6, # labels numbers 1 throug
 lwd = 0, # do not plot axis
 lwd.ticks = 1) # plot tick marks

plot(...,
 axes = F,
 xlim = c(1, 6),
 ylim = c(10, 35))
box()
axis(side = 1, at = 1:6, labels = 1:6,lwd =
axis(side = 2, # y-axis
 at = seq(10, 35, 5), # ticks every 5 p
 labels = seq(10, 35, 5), # labels 10:3
 lwd = 0, lwd.ticks = 1,
 las = 1) # horizonal tick labels

10 / 60

UNIVERSITY OF WASHINGTON

box(bty = "o",
 lwd = 3,
 lty = 1)

box(bty = "o",
 lwd = 3,
 lty = 2)

box(bty = "o",
 lwd = 3,
 lty = 3)

box(bty = "o",
 lwd = 3,
 lty = 4)

box(bty = "o",
 lwd = 3,
 lty = 5)

box(bty = "o",
 lwd = 3,
 lty = 6)

Change box() width and line type

11 / 60

UNIVERSITY OF WASHINGTON

Point and Line Types

12 / 60

UNIVERSITY OF WASHINGTON

Adjusting Point Shape with pch
plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 cex = 1.25, # size
 pch = 16) # shape

13 / 60

UNIVERSITY OF WASHINGTON

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 cex = 1.5,
 pch = "+")

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 cex = 1.5,
 pch = "🛻") # truck emoji

pch is customizable

14 / 60

UNIVERSITY OF WASHINGTON

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 cex = 1.25,
 pch = 1:nrow(mtcars))

👈 Because there are only 1:20 valid values of
pch , R will give you a warning and recycle the
1:20 vector

👈 Each value 1:20 maps onto the element
passed to x and y

pch is vectorized

15 / 60

UNIVERSITY OF WASHINGTON

Adding lines to your plot
There are many ways to add lines to a plot in R. Some of the most common lines are vertical or
horizontal lines, regression lines, and local regression (LOWESS) lines.

The abline() function can take either (a) a fitted regression object, (b) the intercept (a) and slope (b)
values, (c) a y-axis value for horizontal lines (h), or (d) an x-axis value for vertical lines (v).

For example, to add lines at the mean of x and y:

plot(...)
abline(v = mean(mtcars$wt, na.rm = T),
 h = mean(mtcars$mpg, na.rm = T),
 lty = 3)

16 / 60

UNIVERSITY OF WASHINGTON

matlines()
plot(...)

fit <- lm(mpg ~ wt,
 data = mtcars)

new_wt <- seq(1, 6, .05)
pred <- predict(fit,
 newdata = data.frame(wt = new_wt),
 interval = "confidence",
 level = 0.95)

Plots multiple lines based on a matrix of cols (with x and y line coords)
matlines(new_wt, pred, lty = c(1, 3, 3), lwd = 1.5, col = c("black", "blue", "blue"))

17 / 60

UNIVERSITY OF WASHINGTON

lines()
The lines() function is a generic function that takes either x and y coordinates to plot a
line (similar to matlines()) or a formula to compute these coordinates

For example, let's draw a box around the three heaviest cars:

plot(...)

lines(x = c(5.1, 5.6, 5.6, 5.1, 5.1),
 y = c(17, 17, 8, 8, 17))

18 / 60

UNIVERSITY OF WASHINGTON

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 cex = 1.5,
 pch = 16,
 col = "purple")

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 cex = 1.5,
 pch = 16,
 col = "orange")

Adjusting Point Colors with col

19 / 60

UNIVERSITY OF WASHINGTON

R's Colors
R has built-in colors that can be accessed by name or by index with the col
argument (we did this in the previous slide). To see the list of all 657 colors,
use the colors() function, or see this PDF.

20 / 60

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

UNIVERSITY OF WASHINGTON

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 cex = 1.5, pch = 16,
 col = "#4b2e83") # UW purple

plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 cex = 1.5, pch = 16,
 col = rgb(51, 0, 111, # UW purple
 maxColorValue = 255))

HTML Color Codes
R can also take hex codes or RGB (red, blue, green) color codes, which gives
you access to infinite colors. Use this tool to help you find exactly the color you
want.

When you use RGB color codes you can also specify the alpha channel, which
gives the colors transparency (this is also possible with HEX codes, just harder)

21 / 60

https://htmlcolorcodes.com/

UNIVERSITY OF WASHINGTON

Transparency with Alpha
plot(x = mtcars$wt, y = mtcars$mpg,
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 cex = 1.5, pch = 16,
 col = rgb(51, 0, 111, 255*.5, # 0 = transparent, 1 = completely opaque
 maxColorValue = 255))

22 / 60

UNIVERSITY OF WASHINGTON

R's Color Functions
rainbow() : n colors (with alpha transparency) corresponding with the rainbow color
spectrum

heat.colors() : n colors (with alpha transparency) ranging from red to light yellow

terrain.colors() : n colors (with alpha transparency) corresponding with terrain
map colors

topo.colors() : n colors (with alpha transparency) corresponding with topography
map colors

cm.colors() : n colors (with alpha transparency) ranging from cyan to magenta

hcl() : create vector of colors from vectors specifying hue (h), chroma (c), and
luminance (l)

RColorBrewer: An R package with convenient color scheme and functions. See
RColorBrewer::display.brewer.all() to plot the available color palettes.

23 / 60

UNIVERSITY OF WASHINGTON

col is vectorized
The col argument is vectorized, which means you can do things like create another dimension (color)
in your data to represent more information. For example, using heat.colors() , we will color the
fastest 1/4 mile time red and the slowest light yellow:

plot(x = mtcars[order(mtcars$qsec), c("wt", "mpg")], # order rows by qsec
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 pch = 16, cex = 1.50,
 col = heat.colors(length(mtcars$wt), alpha = .75))

24 / 60

UNIVERSITY OF WASHINGTON

cex is vectorized
The cex argument is also vectorized and can be used to create new dimensions in your figures. In this
plot, larger points represent faster 1/4 mile times.

plot(x = mtcars[order(mtcars$qsec), c("wt", "mpg")], # order rows by qsec
 main = "Vehicle Efficiency by Weight",
 xlab = "Vehicle Weight (1000 lbs)",
 ylab = "Miles Per Gallon (MPG)",
 pch = 16,
 cex = seq(3.5, 1.25, length.out = nrow(mtcars)),
 col = rgb(0, 0, 0, .5))

25 / 60

UNIVERSITY OF WASHINGTON

plot(...)
grid(col = "gray48")

☝️Problem: gridlines placed on top of the points

Creating Grids
grid(nx = NULL, ny = nx, col = "lightgray", lty = "dotted",
 lwd = par("lwd"), equilogs = TRUE)

By default the number of lines in the x and y directions will match the number of tick marks

plot(..., type = "n") # do not plot points
grid(col = "gray48")
points(x = mtcars[order(mtcars$qsec), c("wt
 pch = 16,
 cex = seq(3.5, 1.25, length.out = nr
 col = rgb(0, 0, 0, .5))

26 / 60

UNIVERSITY OF WASHINGTON

Plot Background
To change the background of just the plot region (i.e., where the points go), you need to:

1. Create an empty plot
2. Create a rectangle using rect() of the plotting region
3. Create points (and anything else you want to plot) over the rectangle

plot(..., type = "n")

rect(xleft = par("usr")[1],
 ybottom = par("usr")[3],
 xright = par("usr")[2],
 ytop = par("usr")[4],
 col = "black")

points(x = mtcars[order(mtcars$qsec), c("wt
 pch = 16,
 cex = seq(3.5, 1.25, length.out = nro
 col = rgb(255, 252, 245, 255*.5, maxC

27 / 60

UNIVERSITY OF WASHINGTON

Plotting Area Background

Changing the background of the entire plotting area is much easier than
changing just the plotting region

par("bg" = "black", # Change background color
 "fg" = "white") # Change foreground color (box, axes, tick marks)

plot(...,
 col = "white", # Points
 col.main = "white", # Main title
 col.lab = "white", # Axis labels
 col.axis = "white") # Tick labels

28 / 60

UNIVERSITY OF WASHINGTON

Legends
plot(x = mtcars[order(mtcars$cyl), c("wt", "mpg")], # order rows by cyl
 col = rep(hcl.colors(3, alpha = .6), times = table(mtcars$cyl)), # color by cyl
 ...) # color by cyl

legend(x = "topright", # takes keywords OR x, y coordinates
 title = "Cylinders", # legend title
 legend = seq(4, 8, 2), # values inside legend
 col = hcl.colors(3, alpha = .75), # colors corresponding with values
 horiz = T, # plot legend horizontally
 pch = 16) # shape of legend point

29 / 60

UNIVERSITY OF WASHINGTON

Adding Text to Plots
plot(...)

text(x = mtcars[, c("wt", "mpg")], # x,y coordinates of labels
 labels = mtcars$cyl,
 col = "white",
 cex = .75)

30 / 60

UNIVERSITY OF WASHINGTON

Labeling Specific Points
plot(...)

text(x = mtcars[mtcars$mpg %in% c(min(mtcars$mpg), max(mtcars$mpg)), c("wt", "mpg")],
 labels = rownames(mtcars)[mtcars$mpg %in% c(min(mtcars$mpg), max(mtcars$mpg))],
 cex = .75,
 pos = c(2, 1, 2))

31 / 60

UNIVERSITY OF WASHINGTON

Margin text with mtext()
Sometimes you want to put text in the margins of the plot (e.g., when you have multiple plots and you
want to give them all one title). For that you can use the mtext() function (for margin text).

for(i in 1:4){
 mtext(paste0("mtext(..., side = ", i, ")"), side = i)
}

32 / 60

UNIVERSITY OF WASHINGTON

Changing Fonts
Changing font size and style is easy, but changing font family is a bit trickier because it
depends on the fonts you have installed on your operating system

The extrafont package extends the fonts available for plotting in R. First, install the
package with install.packages("extrafont") then import the fonts with
extrafont::font_import()

Font par arguments:

font : Integer which specifies which font style to use for text

1 = plain
2 = bold
3 = italic
4 = bold italic

font.axis : Integer which specifies which font to use for axis annotation

font.lab : Integer which specifies which font to use for x and y labels (axis labels)

font.main : Integer which specifies which font to use for main titles

font.sub : Integer which specifies which font to use for subtitles

33 / 60

UNIVERSITY OF WASHINGTON

plot(...,
 family = "Ubuntu", # Ubuntu font
 font.main = 4, # Title (bold, italic)
 font.axis = 2, # Axis tick mark labels (bold)
 font.lab = 4) # Axis labels (bold italic)

34 / 60

UNIVERSITY OF WASHINGTON

par(mfrow = c(2, 4) par(mfcol = c(2, 4)

Multiple Plots in Same Window
There are two primary ways of creating multiple figures within the same window in R:

par 's mfrow and mfcol arguments
the layout() function

mfrow and mfcol
These functions take a vector of two elements (nrow, ncol) and draw a grid on the graphing screen that
is filled with figures by row (mfrow) or by column (mfcol)

35 / 60

UNIVERSITY OF WASHINGTON

mfrow/mfcol example:
par(mfrow = c(2, 4))
for(i in 1:8){
 plot(mtcars[, c(i, i+1)],
 main = paste(colnames(mtcars[, c(i+1, i)]),
 collapse = " ~ "))
}

36 / 60

UNIVERSITY OF WASHINGTON

layout_mat <- matrix(c(3, 1,
 6, 5,
 4, 2),
 nrow = 3,
 byrow = T)

layout(layout_mat, c(1, 2), c(1, 1, 1))

layout_mat <- matrix(c(6, 5,
 2, 1,
 3, 4),
 nrow = 3,
 byrow = T)

layout(layout_mat, c(1, 2), c(1, 1, 1))

Multiple figures with layout()
The layout function takes a matrix that specifies the location of the next N figures created and the
order in which they will be placed. The widths and heights arguments take the relative (or in
centimeters if you prefer) row/col widths. For example:

37 / 60

UNIVERSITY OF WASHINGTON

layout_mat <- matrix(c(1, 1,
 2, 3,
 4, 5),
 nrow = 3,
 byrow = T)

layout(layout_mat, c(1, 1), c(1, 1, 1))

layout_mat <- matrix(c(1, 1,
 2, 3,
 4, 3),
 nrow = 3,
 byrow = T)

layout(layout_mat, c(1, 1), c(2, 1))

Complex layouts with layout()

38 / 60

UNIVERSITY OF WASHINGTON

Example: Adding Marginal Distributions

layout_mat <- matrix(c(2, 0,
 1, 3),
 nrow = 2 byrow = T)

layout(mat = layout_mat,
 widths = c(3, 0.5),
 heights = c(1, 3))

39 / 60

UNIVERSITY OF WASHINGTON

Plot main scatterplot
par(mar = c(5, 4, 1, 1) + 0.1)
plot(...)

Add marginal rugs to x and y axes
rug(mtcars$wt, side = 1)
rug(mtcars$mpg, side = 2)

Get densities of `wt` and `mpg`
d_wt <- density(mtcars[order(mtcars$qsec), "wt"])
d_mpg <- density(mtcars[order(mtcars$qsec), "mpg"])

par(mar = c(0,3,1,.1))
plot(d_wt, axes = F, main = "", xlab= "", ylab = "", lwd = 2)

par(mar = c(4.25,0,1,1))
plot(d_mpgy, d_mpgx, type="l", axes = F, main = "",
 xlab= "", ylab = "", lwd = 2)

40 / 60

UNIVERSITY OF WASHINGTON
41 / 60

UNIVERSITY OF WASHINGTON

Plot Margins
Inner Margins
Inner margins refer to the margins on each axis

par("mar") is a numerical vector
corresponding with c(bottom, left, top,
right) that specifies the number of lines of
margin on each side of the plot (default = c(5,
4, 4, 2) + 0.1)

par("mai") is similar to mar , except the
margins are specified in inches (default =
c(1.02, 0.82, 0.82, 0.42))

Outer Margins
Outer margins correspond with the entire plotting region, not just the axes

par("oma") is a numerical vector corresponding with c(bottom, left, top, right) that specifies
the number of lines of margin on each side of the plot (default is no margin)

par("omi") is similar to oma , except the margins are specified in inches

42 / 60

UNIVERSITY OF WASHINGTON

Example: Outer Margin Labels

par(..., oma = c(2, 2, 0, 4), family = "Ubuntu")

mtext(text="Vehicle Height (1000lbs)", side = 1, line = 0, outer = TRUE, font = 2)
mtext(text="Miles Per Gallon (MPG)", side = 2, line = 0, outer = TRUE, font = 2)

43 / 60

UNIVERSITY OF WASHINGTON

Other Types of Plots

44 / 60

UNIVERSITY OF WASHINGTON

Line Graph
The Theoph dataset in Base R has data from an experiment on the pharmacokinetics of theophylline (a
medication for lung diseases like COPD). Let's plot the mean theophylline concentration (mg/L) over
time (within-subjects) by dose administered (between-subjects).

Data need to be in long form for line graphs

conc_data <- Theoph %>%
 mutate(Subject = as.numeric(Subject)) %>%
 group_by(Subject) %>%
 arrange(Time) %>%
 mutate(timepoint = 1:n()) %>%
 group_by(Dose, timepoint) %>%
 summarize(conc = mean(conc, na.rm = T),
 Time = mean(Time, na.rm = T))

glimpse(conc_data)

Rows: 110
Columns: 4
Groups: Dose [10]
$ Dose <dbl> 3.10, 3.10, 3.10, 3.10, 3.10, 3.10, 3.10, 3.10, 3.10, 3.10, …
$ timepoint <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9…
$ conc <dbl> 0.00, 7.37, 9.03, 7.14, 6.33, 5.66, 5.67, 4.24, 4.11, 3.16, …
$ Time <dbl> 0.00, 0.30, 0.63, 1.05, 2.02, 3.53, 5.02, 7.17, 8.80, 11.60,…

45 / 60

https://www.webmd.com/drugs/2/drug-3591-3076/theophylline-oral/theophylline-sustained-release-oral/details

UNIVERSITY OF WASHINGTON

par(mar = c(5, 4, 0, 0))
par(family = "Ubuntu",
 font.lab = 4,
 cex.lab = 1.15)

Plot empty plot with correct dimensions
plot(x = conc_data$Time, y = conc_data$conc, type = "n", axes = F,
 xlab = "Time (hours)", ylab = "Concentration (mg/L)",
 ylim = c(0, 12))
box(lwd = 1.5)
axis(side = 1, at = axTicks(1), labels = axTicks(1), lwd = 0, lwd.ticks = 1)
axis(side = 2, at = seq(0, 12, 2), labels = seq(0, 12, 2), lwd = 0, lwd.ticks = 1, las = 1)

Plot line of each dose over time
lines() is similar to points(type = "l")

46 / 60

UNIVERSITY OF WASHINGTON

Plotting dates on the x-axis
When you have a Date column, R's plot() will automatically plot the dates properly on the x-axis. If
you want to change the x-axis at all (labels, tick marks, other aesthetics), your best bet is to use the
special axis.Date() function

Axis ticks at each month Jan - Dec
axis.Date(
 # x-axis
 side = 1,

 # Date object to create axis
 x = counts$Date,

 # Ticks from Jan to Dec each year in the data
 at = seq.Date(min(counts$Date),
 max(counts$Date),
 by = "month"),

 # Labels from Jan to Dec each year in the data
 # formatted to Year and abbreviated month name
 # (e.g., 2021 Aug)
 labels = format(seq.Date(min(counts$Date),
 max(counts$Date),
 by = "month"), "%b %Y"),

 # Rotate text -90 degrees
 las = 2
)

47 / 60

UNIVERSITY OF WASHINGTON
48 / 60

UNIVERSITY OF WASHINGTON

Histogram
hist(x = mtcars$mpg, # data to plot
 breaks = 15, # change default number of bars
 xlim = c(10, 35), # change size of x-axis
 main = "", # no main title
 xlab = "Mile Per Gallon (MPG)", # x-axis title
 las = 1, # y-axis ticks horizontal
 border = "darkblue", # bar border color
 col = "lightblue") # bar fill color

49 / 60

UNIVERSITY OF WASHINGTON

Frequency Polygon
Get histogram parameters without plotting it
p <- hist(x = mtcars$mpg, breaks = 15, plot = F)
str(p)

List of 6
$ breaks : int [1:13] 10 12 14 16 18 20 22 24 26 28 ...
$ counts : int [1:12] 2 1 7 3 5 5 2 2 1 0 ...
$ density : num [1:12] 0.0312 0.0156 0.1094 0.0469 0.0781 ...
$ mids : num [1:12] 11 13 15 17 19 21 23 25 27 29 ...
$ xname : chr "mtcars$mpg"
$ equidist: logi TRUE
- attr(*, "class")= chr "histogram"

Plot the midpoints and associated frequencies
plot(x = c(min(p$mids)-2, p$mids, max(p$mids)+2),
 y = c(0, p$counts, 0),
 type = "l",
 xlab = "Miles Per Gallon (MPG)",
 ylab = "Frequency",
 axes = F)

... # axes, box

Create polygon to fill in area below curve
polygon(x = c(min(p$mids)-2, p$mids, max(p$breaks)+2), # create 0 min and max
 y = c(0, p$counts, 0),
 col = "lightblue",
 border = "darkblue")

50 / 60

UNIVERSITY OF WASHINGTON
51 / 60

UNIVERSITY OF WASHINGTON

Density plot
Get density vals
dens <- density(mtcars$mpg)

Plot density object (with other plotting args)
plot(x = dens, ...)
axis(side = 1, ...) # no side 2

polygon(dens, col = "lightblue", border = "darkblue")

52 / 60

UNIVERSITY OF WASHINGTON

The Normal Curve
The polygon() function can be used to plot any area(s) you want. For example:

par(mar=c(4,0,0,0),
 family = "Ubuntu")

curve(expr = dnorm(x, mean = 0, sd = 1),
 xlim = c(-4, 4),
 xlab = "z-score",
 ylab = "",
 lwd = 1.5,
 axes = FALSE)

axis(side = 1, at = qnorm(c(0.005, 0.025, .50, 0.975, .995)),
 labels = format(qnorm(c(0.005, 0.025, .50, 0.975, .995)), nsmall = 2, digits = 3),
 lwd = 0, lwd.ticks = 1)

Z scores to draw polygon (tails)

53 / 60

UNIVERSITY OF WASHINGTON

Barplots
R's chickwts data comes from a between-subjects experiment on the effect of chicken feed
supplements on chicken growth rate at 6 weeks old:

'data.frame': 71 obs. of 2 variables:
$ weight: num 179 160 136 227 217 168 108 124 143 140 ...
$ feed : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...

Calculate means and info for CI error bars (n, SD)
chickwts_desc <- chickwts %>%
 group_by(feed) %>%
 summarize(n = n(),
 mean_weight = mean(weight, na.rm = T),
 sd_weight = sd(weight, na.rm = T))

feed n mean_weight sd_weight

casein 12 323.5833 64.43384

horsebean 10 160.2000 38.62584

linseed 12 218.7500 52.23570

meatmeal 11 276.9091 64.90062

soybean 14 246.4286 54.12907

sunflower 12 328.9167 48.83638

54 / 60

UNIVERSITY OF WASHINGTON

barplot(chickwts_desc$mean_weight,
 names.arg = stringr::str_to_title(chickwts_desc$feed),
 ylim = c(0, 350),
 las = 1,
 ylab = "Mean Weight (g)",
 border = "darkblue",
 col = "lightblue")

55 / 60

UNIVERSITY OF WASHINGTON

Error Bars

Save barplot x values
bp <- barplot(...)

with() lets you reference columns without subsetting each time
with(chickwts_desc,
 # draw arrows with flat lines on each head
 arrows(x0 = bp,
 x1 = bp,
 y0 = mean_weight - qnorm(.025, lower.tail = F) * (sd_weight / sqrt(n)),
 y1 = mean_weight + qnorm(.025, lower.tail = F) * (sd_weight / sqrt(n)),
 lwd = 1.5, angle = 90, code = 3, length = 0.05, col = "darkblue")
)

56 / 60

UNIVERSITY OF WASHINGTON

The pie() functions uses a table of counts (i.e.
relative proportions) to build the initial pie chart

The table() and tapply() functions from
base R are both very helpful for this

group_by() and summarize(n = n()) from
dplyr are also very helpful

From the King County 2016 elections data:

counts <- d %>%
 group_by(Party_Simplified) %>%
 summarize(n = n())

A tibble: 4 × 2
Party_Simplified n
<chr> <int>
1 Democrat 31931
2 Non-partisan 182983
3 Republican 2683
4 Third Party 43518

pie(x = counts$n,
 labels = counts$Party_Simplified,
 col = rainbow(4))

Pie Chart

57 / 60

UNIVERSITY OF WASHINGTON

pie(x = counts$n,
 labels = counts$Party_Simplified,
 col = rainbow(4))

pie(x = counts$n,
 labels = counts$Party_Simplified,
 col = rainbow(4),
 init.angle = 90)

Use the init.angle argument to control the initial rotation of the pie chart

See help("pie") for more pie chart plotting options

58 / 60

UNIVERSITY OF WASHINGTON

See `help("bxp")` for boxplot options
boxplot(mpg ~ cyl, data = mtcars,
 xlab="Number of Cylinders",
 ylab="Miles Per Gallon",
 pch = 20,
 col = rainbow(3, .5),
 boxwex = 0.5)

boxplot(mpg ~ cyl, data = mtcars,
 ylab="Number of Cylinders",
 xlab="Miles Per Gallon",
 pch = 20,
 col = rainbow(3, .5),
 boxwex = 0.5,
 horizontal = TRUE)

Boxplot

59 / 60

UNIVERSITY OF WASHINGTON

vioplot(mpg ~ cyl, data = mtcars,
 xlab="Number of Cylinders",
 ylab="Miles Per Gallon (MPG)",
 pch = 20,
 ylim = c(8, 35),
 col = rainbow(3, .5),
 las = 1)

vioplot(mpg ~ cyl, data = mtcars,
 xlab="Number of Cylinders",
 ylab="Miles Per Gallon (MPG)",
 pch = 20, las = 1,
 ylim = c(8, 35),
 col = rainbow(3, .5),
 horizontal = TRUE)

Violin Plot
You can make violin plots in base R, but it would require a lot of work and there's a package to make
your life easier (while still using base R graphics) works just like the code for boxplot

60 / 60

https://cran.r-project.org/web/packages/vioplot/vioplot.pdf

